Series
Sum of geometric series
r < 1
Infinite sum of geometric series
Sn = a0 / (1 - r)
Example
∑(n=0..∞) 1/2n = 1 + 1/2 + 1/4 + …
a0 = 1/20 ; r = 1/2
Sn = (1/20) / (1 - 1/2) = 1 / (1/2) = 2
r > 1
Partial sum of geometric series
Sn = a1 · ((rn - 1)/(r - 1))
Sn = a1 · ((1 - rn)/(1 - r))
Example
1 + 2 + 4 + 8 + … + 1024
a1 = 1 ; r = 2
n = 11 (There are 11 elements in total because the series is: 20 + 21 + 22 + 23 + … + 210)
Sn = a1 · ((rn - 1)/(r - 1))
Sn = 1 · ((211 - 1)/(2 - 1)) = 211 - 1
Sum of arithmetic series
Sn = (n (a1 + an)) / 2
Example
1 + 2 + 3 + … + N
Sn = (N (1 + N)) / 2 = (N (N + 1)) / 2
Sum of series
∑(i=1..n) c = c·n
∑(i=1..n) i = n(n+1) / 2
∑(i=1..n) i² = n(n+1)(2n+1) / 6
∑(i=1..n) i³ = n²(n+1)² / 4
∑(i=1..n) 1/i = 1